Revisiting Key-alternating Feistel Ciphers for Shorter Keys and Multi-user Security

Chun Guo and Lei Wang

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain Shanghai Jiao Tong University

Presented by Yaobin Shen, Shanghai Jiao Tong University December 3 AISACRYPT 2018

3 Key Issues in Security Proofs

< 一型

э

Block Ciphers

- Usually iterative designs
- Fall into two paradigms:

Feistel cipher v.s. Even-Mansour cipher

- Consider constructing a cipher with 2*n*-bit blocks.
- Feistel: underlying primitives have
 - smaller size, *i.e.*, half block size; and
 - less construction properties, *i.e.* no need for invertibility

C. Guo, L. Wang (SJTU)

Feistel cipher v.s. Even-Mansour cipher

- Consider constructing a cipher with 2*n*-bit blocks.
- Feistel: underlying primitives have
 - smaller size, *i.e.*, half block size; and
 - less construction properties, i.e. no need for invertibility
- Even-Mansour: larger primitives for higher provable (lower) bound.
 - O(n) rounds for 2^{2n} security.
 - In comparison, for Feistel security is at most 2^n .

C. Guo, L. Wang (SJTU)

Luby-Rackoff Feistel Cipher

- Use a keyed PRF G_K for the round function: $(L, R) \mapsto (L \oplus G_K(R), L)$
- Long-term research since [Luby and Rackoff, 1988], consists of
 - provable security lower bound;
 - cryptanalytic: generic attacks;
 - bridge abstract model and dedicated ciphers, *e.g.* practical key size, less round functions;

Gap between Generic Feistel and Dedicated Cipher

- (Recall) the general model: *independent* round-keys.
- In reality: round-keys are derived from a short main-key, thus *correlated*.
 - Using identical round-keys: 5 rounds [Pie91]
 - Using two independent round-keys: [NR99, PRG+99]
- Besides, how to design the keyed PRF G_K ?

Keyed Functions from Keyless Functions

- Important and popular research direction: constructing the keyed function from public *keyless* random functions *F_i*
- This turns *Luby-Rackoff* into *key-alternating Feistel* [Lampe and Seurin, FSE 2014]

Luby-Rackoff Feistel

Key-Alternating Feistel

• General case

using *independent* public round functions F_i *independent* round keys K_i .

• *t* rounds has $2^{\frac{m}{r+1}}$ security with $r = \lfloor t/6 \rfloor$ [Lampe and Seurin, FSE 2014] (asymptotically optimal)

Sec	urity	#rounds	Reference
2'	n/2	6	[Lampe and Seurin]
2 ²	n/3	12	
2 ³	n/4	18	

• Known as *Feistel-2* schemes in the cryptanalytic community [Isobe and Shibutani, ASIACRYPT 2013]

Attacks	# Rounds	Key size	Complexity	Reference
Key-Recovery	6	2 <i>n</i>	$2^{3n/2}$	[Guo et al,
	8	3 <i>n</i>	$2^{8n/3}$	ASIACRYPT 2014]
	10	4 <i>n</i>	$2^{11n/3}$	

3 Key Issues in Security Proofs

4 Conclusion

C. Guo, L. Wang (SJTU)

< 🗗 🕨

э

In Short

We revisit the information-theoretic security of key-alternating Feistel in the ideal model.

- We prove security for correlated round-keys.
- We prove non-degradating multi-user security.

• Assume independent round-keys K_i

In reality: correlated round-keys.

• Assume (mostly) independent public round functions *F_i* In reality: identical round functions.

Security	#rounds	Reference		
2 ^{n/2}	4	[Gentry and Ramzan, ASIACRYPT 2004]		
2 ^{n/2}	6	[Lampe and Seurin, FSE 2014]		
$2^{2n/3}$	12			
$2^{3n/4}$	18			

Our First Result for Birthday $2^{n/2}$ Security

- Uses 4 rounds with single public round function
- Uses Suitable Round Key Vectors $\overrightarrow{K} = (K_1, K_2, K_3, K_4)$:
 - K₁ is uniformly distributed;
 - K₄ is uniformly distributed;
 - $K_1 \oplus K_4$ is uniformly distributed;

Our First Result for Birthday $2^{n/2}$ Security

- Denote q_e the number of cipher queries
- Denote q_f the number of function queries

Theorem

For the 4-round idealized Key-Alternating Feistel with a Single public round Function (SF) and a suitable round-key vector, in single-user (su) setting it holds

$$\mathsf{Adv}^{su}_{KAFSF}(q_f, q_e) \leq rac{9q_e^2 + 4q_eq_f}{N}$$

In the multi-user (mu) setting it holds

$$\mathsf{Adv}_{\mathsf{KAFSF}}^{\mathsf{mu}}(q_f, q_e) \leq \frac{50q_e^2 + 8q_eq_f}{N}$$

Minimalism

- Derive round-keys from an *n*-bit main-key K
- Key-schedule function π is a public and fixed orthomorphism of Fⁿ₂,
 e.g., π(K_L || K_R) = K_L ⊕ K_R || K_L

Minimalism

No round-key in middle rounds.

- But of course you can add any round-keys, they won't reduce security.
- On the other hand, the "unprotected" middle two rounds match Ramzan and Reyzin (CRYPTO 2000), who showed that the middle two round functions of 4-round *Luby-Rackoff* scheme can be public.

- We consider *independent* round functions for simplicity.
- We prove 6 rounds have $2^{(2n-r)/3}$ security, when using **Suitable Round Key Vectors** $\vec{K} = (K_1, K_2, K_3, K_4, K_5, K_6)$ such that
 - K_1, K_3, K_5 are uniform in $\{0, 1\}^n$, K_2, K_4, K_6 are uniform in 2^{n-r} possibilities
 - for $(i,j) \in \{(1,2),(2,3),(4,5),(5,6),(1,6)\}$,
 - K_i and K_j are independent

This means "adjacent" round-keys are independent. This is easily ensured by the common FSR-based key-schedules.

Theorem

For the 6-round idealized Key-Alternating Feistel with a suitable round-key vector, in single-user (su) setting it holds

$$\mathsf{Adv}^{su}_{KAF}(q_f, q_e) \leq \frac{7q_e^3 + 13q_eq_f^2 + 22q_e^2q_f}{N^2} + \frac{2^r(8q_eq_f^2 + 2q_e^2q_f)}{N^2}$$

In multi-user (mu) setting it holds

$$\mathsf{Adv}_{KAF}^{mu}(q_f, q_e) \leq \frac{1214q_e^3 + 26q_eq_f^2 + 356q_e^2q_f}{N^2} + \frac{2^r(600q_e^3 + 16q_eq_f^2 + 196q_e^2q_f)}{N^2}.$$

The Simplest Example

Alternating two main-keys $|K_1| = n$, $|K_2| = n - r$.

Collapses to Partial-key Even-Mansour (PKEM)

This means the permutation in PKEM can be instantiated with a 6-round keyless Feistel for beyond-birthday security.

C. Guo, L. Wang (SJTU)

December 3, 2018 20 / 36

Application: Instantiating Keyed Sponges

Keyed sponges can be used for MACs and authenticated encryption.

Application: Instantiating Keyed Sponges

Many (inner and outer) keyed sponges have their security reduce to the PKEM cipher.

We show PKEM can be instantiated with the 6-round keyless Feistel Ψ_6 .

So (inner and outer) keyed sponges can also be instantiated with the 6-round keyless Feistel Ψ_6 .

Another Application: A Key-schedule Proposal

By the derived conditions on 6 rounds, we propose a concrete key-schedule motivated by the complexity community [Luby and Wigderson, 2005]:

 $\begin{aligned} k_1 &= K_1 + 2 \otimes K_2, \\ k_3 &= 3 \otimes K_1 + 5 \otimes K_2, \\ \dots, \end{aligned} \qquad \begin{aligned} k_2 &= 2 \otimes K_1 + 3 \otimes K_2, \\ k_4 &= 5 \otimes K_1 + 7 \otimes K_2, \\ k_t &= a_t \otimes K_1 + a_{t+1} \otimes K_2, \end{aligned}$

where:

- 2*n*-bit main-key $K = K_1 || K_2$
- $a\otimes b$ is the multiplication of two field elements $a,b\in \mathbb{F}_2^n$
- for $1 \le t \ll 2^n$, let the constants a_t and a_{t+1} be the t and $(t+1)^{\text{th}}$ values in the prime sequence $1, 2, 3, 5, 7, 11, 13, \ldots$ resp.

The complicated sequence of constants eliminate obvious weak keys, see the full version of this paper.

Security	#Rounds	#Indepedent	Minimum	Reference
		Functions	key Size	
$2^{n/2}$	4	2	4 <i>n</i>	[Gentry and Ramzan]
	4	1	n	Ours
$2^{2n/3}$	12	12	12 <i>n</i>	[Lampe and Seurin]
	6	6	2n	Ours

- For birthday security we improve upon Gentry and Ramzan.
- For beyond-birthday security we improve upon Lampe and Seurin.

Remark on a Recent Result

- Gilboa, Gueron, and Nandi (2016) proved the 2-round Even-Mansour with 2*n*-bit keys and 2-round keyless Feistel $\Psi_2^{\mathbf{P}}$ (\mathbf{P} a random permutation) as the round permutations is secure up to $2^{n/2}$ queries.
- This transits into a KAF variant *with whitening keys*, which may be quite different and incomparable to KAF without whitening keys, the focus of the presented work (see https://arxiv.org/abs/1810.07428).

3 Key Issues in Security Proofs

4 Conclusion

< 67 ▶

э

- real world: KAF with random master key
- ideal world: random permutation (RP)
- \mathcal{D} has access to F_1, F_2, \ldots, F_t in both worlds

- the *F_i*'s are modeled as public random functions (adversary can only make black-box queries)
- adversary cannot exploit any weakness of round functions (generic attacks)
- complexity measure of the adversary
 - q_e : #construction queries (Data);
 - q_f : #function queries to each function (Time)
 - computationally unbounded

Security Definition

 $\bullet\,$ advantage of ${\cal D}$ is defined as

$$\textbf{Adv}(\mathcal{D}) = \mathsf{Pr}\left[\mathcal{D}^{\mathsf{real}} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathcal{D}^{\mathsf{ideal}} \Rightarrow 1\right]$$

• security is defined via upper bounding $Adv(\mathcal{D})$:

$$\mathsf{Adv}(q_e, q_f) = \max_{\mathcal{D}} \mathsf{Adv}(\mathcal{D})$$

Proof Framework

- H-coefficients Techniques [Pat09]
- transcript of distinguisher $\tau = (Q_E, Q_{F_1}, \dots, Q_{F_t})$:
 - Q_E : q_e query-responses of cipher;
 - Q_{F_i} : q_f query-responses of function F_i ;
- $\Pr_{re}[\tau]$: the probability of \mathcal{D} receiving τ in real world;
- $\Pr_{id}[\tau]$: the probability of \mathcal{D} receiving τ in ideal world;

Theorem

Let $\varepsilon(q_f, q_e) > 0$. Assume that for any transcript τ with $\Pr_{id}[\tau] > 0$, we have

$$\Pr_{re}(\tau) \ge (1 - \varepsilon(q_f, q_e))\Pr_{id}(\tau),$$

then it holds

$$\mathsf{Adv}(q_f, q_e) \leq \varepsilon(q_f, q_e).$$

C. Guo, L. Wang (SJTU)

Proof Sketch

- peel off the first and the last rounds
- internal states are "random" and just "known" to adversary

Feistel Cipher

3 Key Issues in Security Proofs

< 🗗 🕨

э

- information-theoretic security of Key-Alternating Feistel
- towards minimizing sufficient conditions to guarantee certain bound
 - define suitable round key vectors
 - $2^{n/2}$ bound: 4 rounds with single function
 - $2^{2n/3}$ bound: 6 rounds
- in both single-user and multi-user settings

- information-theoretic security of Key-Alternating Feistel
- towards minimizing sufficient conditions to guarantee certain bound
 - define suitable round key vectors
 - $2^{n/2}$ bound: 4 rounds with single function
 - $2^{2n/3}$ bound: 6 rounds
- in both single-user and multi-user settings

Open Problem

- prove 6-round KAF with less public functions
- improve security bound of 6-round KAF
- improve security bound for *t*-round KAF with generic *t*

Thanks for your attention!